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Marko Vukolić Sharon Weed Cocco Jason Yellick

I B M

Abstract
Hyperledger Fabric is a modular and extensible open-source
system for deploying and operating permissioned block-
chains. Fabric is currently used in more than 400 prototypes
and proofs-of-concept of distributed ledger technology, as
well as several production systems, across different indus-
tries and use cases.

Starting from the premise that there are no “one-size-
fits-all” solutions, Fabric is the first truly extensible block-
chain system for running distributed applications. It supports
modular consensus protocols, which allows the system to
be tailored to particular use cases and trust models. Fab-
ric is also the first blockchain system that runs distributed
applications written in general-purpose programming lan-
guages, without systemic dependency on a native cryptocur-
rency. This stands in sharp contrast to existing blockchain
platforms for running smart contracts that require code to
be written in domain-specific languages or rely on a cryp-
tocurrency. Furthermore, it uses a portable notion of mem-
bership for realizing the permissioned model, which may be
integrated with industry-standard identity management. To
support such flexibility, Fabric takes a novel approach to the
design of a permissioned blockchain and revamps the way
blockchains cope with non-determinism, resource exhaus-
tion, and performance attacks.

This paper describes Fabric, its architecture, the ratio-
nale behind various design decisions, its security model and
guarantees, its most prominent implementation aspects, as
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well as its distributed application programming model. We
further evaluate Fabric by implementing and benchmark-
ing a Bitcoin-inspired digital currency. We show that Fabric
achieves end-to-end throughput of more than 3500 transac-
tions per second in certain popular deployment configura-
tions, with sub-second latency.

1. Introduction
A blockchain can be defined as an immutable ledger for
recording transactions, maintained within a distributed net-
work of mutually untrusting peers. Every peer maintains
a copy of the ledger. The peers execute a consensus pro-
tocol to validate transactions, group them into blocks, and
build a hash chain over the blocks. This process forms the
ledger by ordering the transactions, as is necessary for con-
sistency. Blockchains have emerged with Bitcoin (http:
//bitcoin.org/) and are widely regarded as a promising
technology to run trusted exchanges in the digital world.

In a public or permissionless blockchain anyone can par-
ticipate without a specific identity. Public blockchains typi-
cally involve a native cryptocurrency and often use consen-
sus based on “proof of work” (PoW) and economic incen-
tives. Permissioned blockchains, on the other hand, run a
blockchain among a set of known, identified participants. A
permissioned blockchain provides a way to secure the inter-
actions among a group of entities that have a common goal
but which do not fully trust each other, such as businesses
that exchange funds, goods, or information. By relying on
the identities of the peers, a permissioned blockchain can
use traditional Byzantine-fault tolerant (BFT) consensus.

Blockchains may execute arbitrary, programmable trans-
action logic in the form of smart contracts, as exemplified
by Ethereum (http://ethereum.org/). The scripts in Bit-
coin were a predecessor of the concept. A smart contract
functions as a trusted distributed application and gains its
security from the blockchain and the underlying consensus
among the peers. This closely resembles the well-known ap-
proach of building resilient applications with state-machine
replication (SMR) [31]. However, blockchains depart from
traditional SMR with Byzantine faults in important ways: (1)
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not only one, but many distributed applications run concur-
rently; (2) applications may be deployed dynamically and by
anyone; and (3) the application code is untrusted, potentially
even malicious. These differences necessitate new designs.

Many existing smart-contract blockchains follow the
blueprint of SMR [31] and implement so-called active repli-
cation [13]: a protocol for consensus or atomic broadcast
first orders the transactions and propagates them to all peers;
and second, each peer executes the transactions sequentially.
We call this the order-execute architecture; it requires all
peers to execute every transaction and all transactions to be
deterministic. The order-execute architecture can be found
in virtually all existing blockchain systems, ranging from
public ones such as Ethereum (with PoW-based consensus)
to permissioned ones (with BFT-type consensus) such as
Tendermint (http://tendermint.com/), Chain (http:
//chain.com/), and Quorum (http://www.jpmorgan.
com/global/Quorum). Although the order-execute design
is not immediately apparent in all systems, because the addi-
tional transaction validation step may blur it, the limitations
of order-execute are inherent in all: every peer executes ev-
ery transaction and transactions must be deterministic.

Prior permissioned blockchains suffer from many limita-
tions, which often stem from their permissionless relatives
or from using the order-execute architecture. In particular:

• Consensus is hard-coded within the platform, which con-
tradicts the well-established understanding that there is
no “one-size-fits-all” (BFT) consensus protocol [33];

• The trust model of transaction validation is determined
by the consensus protocol and cannot be adapted to the
requirements of the smart contract;

• Smart contracts must be written in a fixed, non-standard,
or domain-specific language, which hinders wide-spread
adoption and may lead to programming errors;

• The sequential execution of all transactions by all peers
limits performance, and complex measures are needed
to prevent denial-of-service attacks against the platform
originating from untrusted contracts (such as accounting
for runtime with “gas” in Ethereum);

• Transactions must be deterministic, which can be difficult
to ensure programmatically;

• Every smart contract runs on all peers, which is at odds
with confidentiality, and prohibits the dissemination of
contract code and state to a subset of peers.

In this paper we describe Hyperledger Fabric or simply
Fabric, an open-source (http://github.com/hyperledger/
fabric) blockchain platform that overcomes these limita-
tions. Fabric is one of the projects of Hyperledger (http:
//www.hyperledger.org) under the auspices of the Linux
Foundation (http://www.linuxfoundation.org). Fab-
ric is used in more than 400 prototypes, proofs-of-concept,
and in production distributed-ledger systems, across differ-
ent industries and use cases. These use cases include but are
not limited to areas such as dispute resolution, trade logis-

tics, FX netting, food safety, contract management, diamond
provenance, rewards point management, low liquidity se-
curities trading and settlement, identity management, and
settlement through digital currency.

Fabric introduces a new blockchain architecture aiming
at resiliency, flexibility, scalability, and confidentiality. De-
signed as a modular and extensible general-purpose per-
missioned blockchain, Fabric supports the execution of dis-
tributed applications written in standard programming lan-
guages. This makes Fabric the first distributed operating sys-
tem for permissioned blockchains.

The architecture of Fabric follows a novel execute-order-
validate paradigm for distributed execution of untrusted
code in an untrusted environment. It separates the trans-
action flow into three steps, which may be run on different
entities in the system: (1) executing a transaction and check-
ing its correctness, thereby endorsing it (corresponding to
“transaction validation” in other blockchains); (2) order-
ing through a consensus protocol, irrespective of transaction
semantics; and (3) transaction validation per application-
specific trust assumptions, which also prevents race condi-
tions due to concurrency.

This design departs radically from the order-execute
paradigm in that Fabric typically executes transactions be-
fore reaching final agreement on their order. It combines
the two well-known approaches to replication, passive and
active, as follows.

First, Fabric uses passive or primary-backup replica-
tion [6, 13] as often found in distributed databases, but with
middleware-based asymmetric update processing [24, 25]
and ported to untrusted environments with Byzantine faults.
In Fabric, every transaction is executed (endorsed) only by a
subset of the peers, which allows for parallel execution and
addresses potential non-determinism, drawing on “execute-
verify” BFT replication [21]. A flexible endorsement policy
specifies which peers, or how many of them, need to vouch
for the correct execution of a given smart contract.

Second, Fabric incorporates active replication in the
sense that the transaction’s effects on the ledger state are
only written after reaching consensus on a total order among
them, in the deterministic validation step executed by each
peer individually. This allows Fabric to respect application-
specific trust assumptions according to the transaction en-
dorsement. Moreover, the ordering of state updates is del-
egated to a modular component for consensus (i.e., atomic
broadcast), which is stateless and logically decoupled from
the peers that execute transactions and maintain the ledger.
Since consensus is modular, its implementation can be tai-
lored to the trust assumption of a particular deployment. Al-
though it is readily possible to use the blockchain peers also
for implementing consensus, the separation of the two roles
adds flexibility and allows one to rely on well-established
toolkits for CFT (crash fault-tolerant) or BFT ordering.
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Overall, this hybrid replication design, which mixes pas-
sive and active replication in the Byzantine model, and the
execute-order-validate paradigm, represent the main inno-
vation in Fabric architecture. They resolve the issues men-
tioned before and make Fabric a scalable system for permis-
sioned blockchains supporting flexible trust assumptions.

To implement this architecture, Fabric contains modular
building blocks for each of the following components:

Ordering service: An ordering service atomically broad-
casts state updates to peers and establishes consensus on
the order of transactions. It has been implemented with
Apache Kafka/ZooKeeper (http://kafka.apache.
org/) and with BFT-SMaRt [3].

Identity and membership: A membership service provider
is responsible for associating peers with cryptographic
identities. It maintains the permissioned nature of Fabric.

Scalable dissemination: An optional peer-to-peer gossip
service disseminates the blocks output by ordering ser-
vice to all peers.

Smart-contract execution: Smart contracts in Fabric run
within a container environment for isolation. They can
be written in standard programming languages but do not
have direct access to the ledger state.

Ledger maintenance: Each peer locally maintains the ledger
in the form of the append-only blockchain and as a snap-
shot of the most recent state in a key-value store (KVS).
The KVS can be implemented by standard libraries, such
as LevelDB or Apache CouchDB.

The remainder of this paper describes the architecture
of Fabric and our experience with it. Section 2 summa-
rizes the state of the art and explains the rationale behind
various design decisions. Section 3 introduces the architec-
ture and the execute-order-validate approach of Fabric in de-
tail, illustrating the transaction execution flow. In Section 4,
the key components of Fabric are defined, in particular, the
ordering service, membership service, peer-to-peer gossip,
ledger database, and smart-contract API. Results and in-
sights gained in a performance evaluation of Fabric with a
Bitcoin-inspired cryptocurrency, deployed in a cluster en-
vironment on commodity public cloud VMs, are given in
Section 5. They show that Fabric achieves, in popular de-
ployment configurations, throughput of more than 3500 tps,
achieving finality [36] with latency of a few hundred ms. Fi-
nally, Section 6 discusses related work.

2. Background
2.1 Order-Execute Architecture for Blockchains
All previous blockchain systems, permissioned or not, fol-
low the order-execute architecture. This means that the
blockchain network orders transactions first, using a con-

Update stateOrder Execute

● Deterministic (!)
execution

● Persist state on 
all peers

● Consensus or 
atomic broadcast

Figure 1. Order-execute architecture in replicated services.

sensus protocol, and then executes them in the same order
on all peers sequentially.1

For instance, a PoW-based permissionless blockchain
such as Ethereum combines consensus and execution of
transactions as follows: (1) every peer (i.e., a node that par-
ticipates in consensus) assembles a block containing valid
transactions (to establish validity, this peer already pre-
executes those transactions); (2) the peer tries to solve a PoW
puzzle [28]; (3) if the peer is lucky and solves the puzzle, it
disseminates the block to the network via a gossip protocol;
and (4) every peer receiving the block validates the solution
to the puzzle and all transactions in the block. Effectively,
every peer thereby repeats the execution of the lucky peer
from its first step. Moreover, all peers execute the transac-
tions sequentially (within one block and across blocks). The
order-execute architecture is illustrated by Fig. 1.

Existing permissioned blockchains such as Tendermint,
Chain, or Quorum typically use BFT consensus [9], pro-
vided by PBFT [11] or other protocols for atomic broad-
cast. Nevertheless, they all follow the same order-execute
approach and implement classical active SMR [13, 31].

2.2 Limitations of Order-Execute
The order-execute architecture is conceptually simple and
therefore also widely used. However, it has several draw-
backs when used in a general-purpose permissioned block-
chain. We discuss the three most significant ones next.

Sequential execution. Executing the transactions sequen-
tially on all peers limits the effective throughput that can be
achieved by the blockchain. In particular, since the through-
put is inversely proportional to the execution latency, this
may become a performance bottleneck for all but the sim-
plest smart contracts. Moreover, recall that in contrast to tra-
ditional SMR, the blockchain forms a universal computing
engine and its payload applications might be deployed by an
adversary. A denial-of-service (DoS) attack, which severely
reduces the performance of such a blockchain, could simply
introduce smart contracts that take a very long time to exe-
cute. For example, a smart contract that executes an infinite
loop has a fatal effect, but cannot be detected automatically
because the halting problem is unsolvable.

To cope with this issue, public programmable block-
chains with a cryptocurrency account for the execution cost.
Ethereum, for example, introduces the concept of gas con-

1In many blockchains with a hard-coded primary application, such as
Bitcoin, this transaction execution is called “transaction validation.” Here
we call this step transaction execution to harmonize the terminology.

3 2018/2/1

http://kafka.apache.org/
http://kafka.apache.org/


sumed by a transaction execution, which is converted at a
gas price to a cost in the cryptocurrency and billed to the
submitter of the transaction. Ethereum goes a long way to
support this concept, assigns a cost to every low-level com-
putation step, and introduces its own VM monitor to control
execution. Although this appears to be a viable solution for
public blockchains, it is not adequate for the permissioned
model for a general-purpose system without a native cryp-
tocurrency.

The distributed-systems literature proposes many ways
to improve performance compared to sequential execution,
for instance through parallel execution of unrelated oper-
ations [30]. Unfortunately, such techniques are still to be
applied successfully in the blockchain context of smart con-
tracts. For instance, one challenge is the requirement for
deterministically inferring all dependencies across smart
contracts, which is particularly challenging when combined
with possible confidentiality constraints. Furthermore, these
techniques are of no help against DoS attacks by contract
code from untrusted developers.

Non-deterministic code. Another important problem for
an order-execute architecture are non-deterministic transac-
tions. Operations executed after consensus in active SMR
must be deterministic, or the distributed ledger “forks” and
violates the basic premise of a blockchain, that all peers hold
the same state. This is usually addressed by programming
blockchains in domain-specific languages (e.g., Ethereum
Solidity) that are expressive enough for their applications but
limited to deterministic execution. However, such languages
are difficult to design for the implementer and require addi-
tional learning by the programmer. Writing smart contracts
in a general-purpose language (e.g., Go, Java, C/C++) in-
stead appears more attractive and accelerates the adoption of
blockchain solutions.

Unfortunately, generic languages pose many problems
for ensuring deterministic execution. Even if the application
developer does not introduce obviously non-deterministic
operations, hidden implementation details can have the same
devastating effect (e.g., a map iterator is not deterministic in
Go). To make matters worse, on a blockchain the burden
to create deterministic applications lies on the potentially
untrusted programmer. Only one non-deterministic contract
created with malicious intent is enough to bring the whole
blockchain to a halt. A modular solution to filter diverging
operations on a blockchain has also been investigated [8],
but it appears costly in practice.

Confidentiality of execution. According to the blueprint
of public blockchains, many permissioned systems run all
smart contracts on all peers. However, many intended use
cases for permissioned blockchains require confidentiality,
i.e., that access to smart-contract logic, transaction data,
or ledger state can be restricted. Although cryptographic
techniques, ranging from data encryption to advanced zero-
knowledge proofs [2] and verifiable computation [26], can

help to achieve confidentiality, this often comes with a con-
siderable overhead and is not viable in practice.

Fortunately, it suffices to propagate the same state to all
peers instead of running the same code everywhere. Thus,
the execution of a smart contract can be restricted to a subset
of the peers trusted for this task, that vouch for the results
of the execution. This design departs from active replication
towards a variant of passive replication [6], adapted to the
trust model of blockchain.

2.3 Further Limitations of Existing Architectures
Fixed trust model. Most permissioned blockchains rely on
asynchronous BFT replication protocols to establish consen-
sus [36]. Such protocols typically rely on a security assump-
tion that among n > 3f peers, up to f are tolerated to mis-
behave and exhibit so-called Byzantine faults [4]. The same
peers often execute the applications as well, under the same
security assumption (even though one could actually restrict
BFT execution to fewer peers [37]). However, such a quan-
titative trust assumption, irrespective of peers’ roles in the
system, may not match the trust required for smart-contract
execution. In a flexible system, trust at the application level
should not be fixed to trust at the protocol level. A general-
purpose blockchain should decouple these two assumptions
and permit flexible trust models for applications.

Hard-coded consensus. Fabric is the first blockchain sys-
tem that introduced pluggable consensus. Before Fabric, vir-
tually all blockchain systems, permissioned or not, came
with a hard-coded consensus protocol. However, decades of
research on consensus protocols have shown there is no such
“one-size-fits-all” solution. For instance, BFT protocols dif-
fer widely in their performance when deployed in potentially
adversarial environments [33]. A protocol with a “chain”
communication pattern exhibits provably optimal through-
put on a LAN cluster with symmetric and homogeneous
links [18], but degrades badly on a wide-area, heterogeneous
network. Furthermore, external conditions such as load, net-
work parameters, and actual faults or attacks may vary over
time in a given deployment. For these reasons, BFT consen-
sus should be inherently reconfigurable and ideally adapt dy-
namically to a changing environment [1]. Another important
aspect is to match the protocol’s trust assumption to a given
blockchain deployment scenario. Indeed, one may want to
replace BFT consensus with a protocol based on an alterna-
tive trust model such as XFT [27], or a CFT protocol, such
as Paxos/Raft [29] and ZooKeeper [20], or even a permis-
sionless protocol.

2.4 Experience with Order-Execute Blockchain
Prior to realizing the execute-order-validate architecture of
Fabric, the team gained experience with building a per-
missioned blockchain platform in the order-execute model,
with PBFT [11] for consensus. From feedback obtained in
many proof-of-concept applications, the limitations of this
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approach became immediately clear. For instance, users of-
ten observed diverging states at the peers and reported a
bug in the consensus protocol; in all cases, closer inspection
revealed that the culprit was non-deterministic transaction
code. Other complaints addressed limited performance, e.g.,
“only five transactions per second,” until users confessed
that their average transaction took 200ms to execute. We
have learned that the key properties of a blockchain sys-
tem, namely consistency, security, and performance, must
not depend on the knowledge and goodwill of its users, in
particular since the blockchain should run in an untrusted
environment.

3. Architecture
In this section, we introduce the three-phase execute-order-
validate architecture and then explain the transaction flow.
The components of Fabric are discussed in Section 4.

3.1 Fabric Overview
Fabric is a distributed operating system for permissio-
ned blockchains that executes distributed applications writ-
ten in general-purpose programming languages (e.g., Go,
Java, Node.js). It securely tracks its execution history in
an append-only replicated ledger data structure and has no
cryptocurrency built in.

Fabric introduces the execute-order-validate blockchain
architecture and does not follow the standard order-execute
design, for reasons explained in Section 2. In a nutshell, a
distributed application for Fabric consists of two parts:

• A smart contract, called chaincode, which is program
code that implements the application logic and runs dur-
ing the execution phase. The chaincode is the central part
of a distributed application in Fabric and may be written
by an untrusted developer. Special chaincodes exist for
managing the blockchain system and maintaining param-
eters, collectively called system chaincodes (Sec. 4.6).

• An endorsement policy that is evaluated in the validation
phase. Endorsement policies cannot be chosen or modi-
fied by untrusted application developers; they are part of
the system. An endorsement policy acts as a static library
for transaction validation in Fabric, which can merely be
parameterized by the chaincode. Only designated admin-
istrators may run system management functions and have
the right to modify the endorsement policy.
A typical endorsement policy lets the chaincode specify
the endorsers for a transaction in the form of a set of peers
that are necessary for endorsement; it uses a monotone
logical expression on sets, such as “three out of five” or
“A and B or B and C.” Custom endorsement policies
may implement arbitrary logic (e.g., our Bitcoin-inspired
cryptocurrency in Sec. 5.1).

A client sends transactions to the peers specified by the
endorsement policy. Each transaction is then executed by
specific peers and its output is recorded; this step is also

Update state

● Order rw-sets
● Atomic broadcast 

(consensus)
● Stateless ordering

service

● Persist state on all 
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ments

OrderExecute Validate
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● Validate endorse-
ments & rw-sets
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and conflicting 
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Figure 2. Execute-order-validate architecture of Fabric (rw-
set means a readset and writeset as explained in Sec. 3.2).

called endorsement. After execution, transactions enter the
ordering phase, which uses a pluggable consensus protocol
to produce a totally ordered sequence of endorsed transac-
tions grouped in blocks. These are broadcast to all peers,
with the (optional) help of gossip. Unlike standard active
replication [31], which totally orders transaction inputs, Fab-
ric orders transaction outputs combined with state depen-
dencies, as computed during the execution phase. Each peer
then validates the state changes from endorsed transactions
with respect to the endorsement policy and the consistency
of the execution in the validation phase. All peers validate
the transactions in the same order and validation is determin-
istic. In this sense, Fabric introduces a novel hybrid replica-
tion paradigm in the Byzantine model, which combines pas-
sive replication (the pre-consensus computation of state up-
dates) and active replication (the post-consensus validation
of execution results and state changes).

The execute-order-validate approach is illustrated by Fig. 2.

A Fabric blockchain consists of a set of nodes that form a
network. As Fabric is permissioned, all nodes that participate
in the network have an identity, as provided by a modular
membership service provider (MSP) (Sec. 4.1). Nodes in a
Fabric network take up one of three roles:

Clients submit transaction proposals for execution, help
orchestrate the execution phase, and, finally, broadcast
transactions for ordering.

Peers execute transaction proposals and validate transac-
tions. Peers also maintain the blockchain ledger, an
append-only data structure recording all transactions in
the form of a hash chain, as well as the state, a succinct
representation of the latest ledger state. Not all peers ex-
ecute all transaction proposals, only a subset of them
called endorsing peers (or, simply, endorsers), as speci-
fied by the policy of the chaincode to which the transac-
tion pertains. However, all peers maintain the complete
ledger.

Orderering Service Nodes (OSN) (or, simply, orderers)
are the nodes that collectively form the ordering ser-
vice. In short, the ordering service establishes the total
order of all transactions in Fabric, where each transac-
tion contains state updates and dependencies computed
during the execution phase, along with cryptographic sig-
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Figure 3. Fabric high level transaction flow.

natures of the endorsing peers that computed them. Or-
derers are entirely unaware of the application state, and
do not participate in the execution nor in the validation
of transactions. This design choice renders consensus in
Fabric as modular as possible and simplifies replacement
of consensus protocols in Fabric.

Since it is possible to run one physical node with multiple
roles, Fabric can also be operated like a traditional peer-
to-peer blockchain system, in which every node maintains
the state and invokes, validates, and orders transactions. The
transaction flow in Fabric across the different types of nodes
is depicted in Fig. 3.

Compared to the description focusing on one single
blockchain so far, a Fabric network actually supports mul-
tiple blockchains connected to the same ordering service.
Each such blockchain is called a channel and may have
different peers as its members. Channels can be used to
partition the state of the blockchain network, but consen-
sus across channels is not coordinated and the total order of
transactions in each channel is separate from the others. Cer-
tain deployments that consider all orderers as trusted may
also implement by-channel access control for peers. In the
following we mention channels only briefly and concentrate
on one single channel.

The next three sections explain the transaction flow in
Fabric and illustrate the steps of the execution, ordering, and
validation phases. A Fabric network is shown in Fig. 4.

3.2 Execution Phase
In the execution phase, clients send the transaction proposal
(or, simply, proposal) to one or more endorsers for execu-
tion. Recall that every chaincode implicitly specifies a set of
endorsers via the endorsement policy. A proposal contains
the identity of the submitting client (according to the MSP),
the transaction payload in the form of an operation to exe-
cute, parameters, and the identifier of the chaincode to which
it belongs, a nonce to be used only once by each client (such
as a counter or a random value), and a transaction identifier
derived from the client identifier and the nonce. The client
also signs the proposal.

Appl.

MSP

P

SDK

P P P P P P

SDK

OSN

P

OSNOSNOSNOSN

Client

Ordering
service

Peer-to-peer gossip

Peers (P)

Client

Appl.

Appl.

Figure 4. A Fabric network with federated MSPs and run-
ning multiple (differently shaded and colored) chaincodes,
selectively installed on peers according to policy.

The endorsers simulate the proposal, by executing the op-
eration on the specified chaincode, which has been installed
on the blockchain. The chaincode runs in a Docker container,
isolated from the main endorser process.

A proposal is simulated against the endorser’s local
blockchain state, without any synchronization with other
peers at this point; moreover, endorsers do not persist the
results of the simulation to the ledger state. The state of
the blockchain is maintained by the peer transaction man-
ager (PTM) in the form of a versioned key-value store, in
which successive updates to a key have monotonically in-
creasing version numbers (Sec. 4.4). The state created by a
chaincode is scoped exclusively to that chaincode and can-
not be accessed directly by another chaincode. Note that the
chaincode is not supposed to maintain the local state in the
program code, only what it maintains in the blockchain state
that is accessed with GetState, PutState, and DelState oper-
ations. Given the appropriate permission, a chaincode may
invoke another chaincode to access its state within the same
channel.

As a result of the simulation, each endorser produces a
value writeset, consisting of the state updates produced by
simulation (i.e., the modified keys along with their new val-
ues), as well as a readset, representing the version dependen-
cies of the proposal simulation (i.e., all keys read during sim-
ulation along with their version numbers). After the simula-
tion, the endorser cryptographically signs a message called
endorsement, which contains readset and writeset (together
with metadata such as transaction ID, endorser ID, and en-
dorser signature) and sends it back to the client in a proposal
response. The client collects endorsements until they satisfy
the endorsement policy of the chaincode, which the trans-
action invokes (see Sec. 3.4). In particular, this requires all
endorsers as determined by the policy to produce the same
execution result (i.e., identical readset and writeset). Then,
the client proceeds to create the transaction and passes it to
the ordering service.
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Discussion on design choices. As the endorsers simulate
the proposal without synchronizing with other endorsers,
two endorsers may execute it on different states of the ledger
and produce different outputs. For the standard endorse-
ment policy which requires multiple endorsers to produce
the same result, this implies that under high contention of
operations accessing the same keys, a client may not be
able to satisfy the endorsement policy. This is a new ele-
ment compared to primary-backup replication in replicated
databases with synchronization through middleware [24]: a
consequence of the assumption that no single peer is trusted
for correct execution in a blockchain.

We consciously adopted this design, as it considerably
simplifies the architecture and is adequate for typical block-
chain applications. As demonstrated by the approach of Bit-
coin, distributed applications can be formulated such that
contention by operations accessing the same state can be re-
duced, or eliminated completely in the normal case (e.g., in
Bitcoin, two operations that modify the same “object” are
not allowed and represent a double-spending attack [28]).

Executing a transaction before the ordering phase is crit-
ical to tolerating non-deterministic chaincodes as discussed
in Section 2. A chaincode in Fabric with non-deterministic
transactions can only endanger the liveness of its own oper-
ations, because a client cannot gather a sufficient number of
endorsements, for instance. This is much more acceptable in
practice than the situation in an order-execute architecture,
where non-deterministic operations lead to inconsistencies
in the state of the peers.

Finally, tolerating non-deterministic execution also ad-
dresses DoS attacks from untrusted chaincode as an endorser
can simply abort an execution according to a local policy if
it suspects a DoS attack. This will not endanger the consis-
tency of the system, and again, such unilateral abortion of
execution is not possible in order-execute architectures.

3.3 Ordering Phase
When a client has collected enough endorsements on a pro-
posal, it assembles a transaction and submits this to the or-
dering service. The transaction contains the transaction pay-
load (i.e., the chaincode operation including parameters),
transaction metadata, and a set of endorsements. The order-
ing phase establishes a total order on all submitted transac-
tions per channel. In other words, ordering atomically broad-
casts [7] endorsements and thereby establishes consensus on
transactions, despite faulty orderers. Moreover, the ordering
service batches multiple transactions into blocks and outputs
a hash-chained sequence of blocks containing transactions.
Grouping or batching transactions into blocks improves the
throughput of the broadcast protocol, which is a well-known
technique in the context of fault-tolerant broadcasts.

At a high level, the interface of the ordering service only
supports the following two operations. These operations are
invoked by a peer and implicitly parameterized by a channel
identifier:

• broadcast(tx): A client calls this operation to broadcast
an arbitrary transaction tx, which usually contains the
transaction payload and a signature of the client, for
dissemination.

• B ← deliver(s): A client calls this to retrieve block B
with non-negative sequence number s. The block con-
tains a list of transactions [tx1, . . . , txk] and a hash-
chain value h representing the block with sequence num-
ber s−1, i.e., B = ([tx1, . . . , txk], h). As the client may
call this multiple times and always returns the same block
once it is available, we say the peer delivers block B with
sequence number s when it receives B for the first time
upon invoking deliver(s).

The ordering service ensures that the delivered blocks on
one channel are totally ordered. More specifically, ordering
ensures the following safety properties for each channel:

Agreement: For any two blocks B delivered with sequence
number s and B′ delivered with s′ at correct peers such
that s = s′, it holds B = B′.

Hashchain integrity: If some correct peer delivers a block B
with number s and another correct peer delivers block
B′ = ([tx1, . . . , txk], h

′) with number s + 1, then it
holds h′ = H(B), where H(·) denotes the cryptographic
hash function.

No skipping: If a correct peer p delivers a block with num-
ber s > 0 then for each i = 0, . . . , s − 1, peer p has
already delivered a block with number i.

No creation: When a correct peer delivers block B with
number s, then for every tx ∈ B some client has already
broadcast tx.

For liveness, the ordering service supports at least the
following “eventual” property:

Validity: If a correct client invokes broadcast(tx), then ev-
ery correct peer eventually delivers a block B that in-
cludes tx, with some sequence number.

However, every individual ordering implementation is al-
lowed to come with its own liveness and fairness guarantees
with respect to client requests.

Since there may be a large number of peers in the block-
chain network, but only relatively few nodes are expected
to implement the ordering service, Fabric can be config-
ured to use a built-in gossip service for disseminating deliv-
ered blocks from the ordering service to all peers (Sec. 4.3).
The implementation of gossip is scalable and agnostic to the
particular implementation of the ordering service, hence it
works with both CFT and BFT ordering services, ensuring
the modularity of Fabric.

The ordering service may also perform access control
checks to see if a client is allowed to broadcast messages
or receive blocks on a given channel. This and other features
of the ordering service are further explained in Section 4.2.
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Discussion on design choices. It is very important that the
ordering service does not maintain any state of the block-
chain, and neither validates nor executes transactions. This
architecture is a crucial, defining feature of Fabric, and
makes Fabric the first blockchain system to totally sepa-
rate consensus from execution and validation. This makes
consensus as modular as possible, and enables an ecosystem
of consensus protocols implementing the ordering service.

3.4 Validation Phase
Blocks are delivered to peers either via a direct connection
to the ordering service or through gossip. When a new block
arrives, it enters the validation phase, consisting of three
sequential steps:

1. The endorsement policy evaluation occurs in parallel
for all transactions within the block. The evaluation is
the task of the so-called validation system chaincode
(VSCC), a static library that is part of the blockchain’s
configuration and is responsible for validating the en-
dorsement with respect to the endorsement policy config-
ured for the chaincode (see Sec. 4.6). If the endorsement
is not satisfied, the transaction is marked as invalid and
its effects are disregarded.

2. A read-write conflict check is done for all transactions in
the block sequentially. For each transaction it compares
the versions of the keys in the readset field to those in the
current state of the ledger, as stored locally by the peer,
and ensures they are still the same. If the versions do not
match, the transaction is marked as invalid and its effects
are disregarded.

3. The ledger update phase runs last, in which the block is
appended to the locally stored ledger and the blockchain
state is updated. In particular, when adding the block
to the ledger, the results of the validity checks in the
first two steps are persisted as well, in the form of a bit
mask denoting the transactions that are valid within the
block. This facilitates the reconstruction of the state at a
later time. Furthermore, all state updates are applied by
writing all key-value pairs in writeset to the local state.

The default VSCC in Fabric allows monotone logical ex-
pressions over the set of endorsers configured for a chain-
code to be expressed. The VSCC evaluation verifies that the
set of peers, as expressed through valid signatures on en-
dorsements of the transaction, satisfy the expression. Differ-
ent VSCC policies can be configured statically, however.

Discussion on design choices. The ledger of Fabric con-
tains all transactions, including those that are deemed in-
valid. This follows from the overall design, because ordering
service, which is agnostic to chaincode state, produces the
chain of the blocks and because the validation is done by the
peers post-consensus. This feature is needed in certain use
cases that require tracking of invalid transactions during sub-
sequent audits, and stands in contrast to other blockchains
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Figure 5. Components of a Fabric peer.

(e.g., Bitcoin and Ethereum), where the ledger contains only
valid transactions.

4. Fabric Components
Fabric is written in Go and uses the gRPC framework
(http://grpc.io/) for communication between clients,
peers, and orderers. In the following we describe some im-
portant components in more detail. Figure 5 shows the com-
ponents of a peer.

4.1 Membership Service
The membership service provider (MSP) maintains the iden-
tities of all nodes in the system (clients, peers, and order-
ers) and is responsible for issuing node credentials that are
used for authentication and authorization. Since Fabric is
permissioned, all interactions among nodes occur through
messages that are authenticated, typically with digital sig-
natures. The membership service comprises a component
at each node, where it may authenticate transactions, ver-
ify the integrity of transactions, sign endorsements, validate
endorsements, and authenticate other blockchain operations.
Tools for key management and registration of nodes are also
part of the MSP.

The MSP is an abstraction for which different instantia-
tions are possible. The default MSP implementation in Fab-
ric handles standard PKI methods for authentication based
on digital signatures and can accommodate commercial cer-
tification authorities (CAs). A stand-alone CA is provided as
well with Fabric, called Fabric-CA. Furthermore, alternative
MSP implementations are envisaged, such as one relying on
anonymous credentials for authorizing a client to invoke a
transaction without linking this to an identity [10].

Fabric allows two modes for setting up a blockchain net-
work. In offline mode, credentials are generated by a CA
and distributed out-of-band to all nodes. Peers and order-
ers can only be registered in offline mode. For enrolling
clients, Fabric-CA provides an online mode that issues cryp-
tographic credentials to them. The MSP configuration must
ensure that all nodes, especially all peers, recognize the same
identities and authentications as valid.
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The MSP permits identity federation, for example, when
multiple organizations operate a blockchain network. Each
organization issues identities to its own members and every
peer recognizes members of all organizations. This can be
achieved with multiple MSP instantiations, for example, by
creating a mapping between each organization and an MSP.

4.2 Ordering Service
The ordering service manages multiple channels. On every
channel, it provides the following services:

1. Atomic broadcast for establishing order on transactions,
implementing the broadcast and deliver calls (Sec. 3.3).

2. Reconfiguration of a channel, when its members mod-
ify the channel by broadcasting a configuration update
transaction (Sec. 4.6).

3. Optionally, access control, in those configurations where
the ordering service acts as a trusted entity, restricting
broadcasting of transactions and receiving of blocks to
specified clients and peers.

The ordering service is bootstrapped with a genesis block
on the system channel. This block carries a configuration
transaction that defines the properties of the ordering ser-
vice.

The current production implementation consists of or-
dering-service nodes (OSNs) that implement the opera-
tions described here and communicate through the sys-
tem channel. The actual atomic broadcast function is pro-
vided by an instance of Apache Kafka (http://kafka.
apache.org), which offers scalable publish-subscribe mes-
saging and strong consistency despite node crashes, based
on ZooKeeper. Kafka may run on physical nodes separate
from the OSNs. The OSNs act as proxies between the peers
and Kafka.

An OSN directly injects a newly received transaction to
the atomic broadcast (e.g., to the Kafka broker). On the other
hand, the nodes batch transactions received from the atomic
broadcast and form blocks. A block is cut as soon as one of
three conditions is met: (1) the block contains the specified
maximal number of transactions; (2) the block has reached a
maximal size (in bytes); or (3) an amount of time has elapsed
since the first transaction of a new block was received, as
explained below.

This batching process is deterministic and therefore pro-
duces the same blocks at all nodes. It is easy to see that
the first two conditions are trivially deterministic, given the
stream of transactions received from the atomic broadcast.
To ensure deterministic block production in the third case,
a node starts a timer when it reads the first transaction in
a block from the atomic broadcast. If the block is not yet
cut when the timer expires, the node broadcasts a special
time-to-cut transaction on the channel, which indicates the
sequence number of the block which it intends to cut. On the
other hand, every node immediately cuts a new block upon

receiving the first time-to-cut transaction for the given block
number. Since this transaction is atomically delivered to all
connected nodes, they all include the same list of transac-
tions in the block. (To deploy this scheme in the presence of
f Byzantine-faulty OSNs, the block is cut only when receiv-
ing f + 1 time-to-cut transactions.)

The orderers persist a range of the most recently delivered
blocks directly to their filesystem, so they can answer to
peers retrieving blocks through deliver.

The orderer using Kafka is one of three ordering service
implementations currently available. A centralized orderer,
called Solo, runs on one node and is used for development. A
proof-of-concept orderer based on BFT-SMaRt [3] has also
been made available [34]; it ensures the atomic broadcast
service, but not yet reconfiguration and access control. This
illustrates the modularity of consensus in Fabric.

4.3 Peer Gossip
One advantage of separating the execution, ordering, and
validation phases is that they can be scaled independently.
However, since most consensus algorithms (in the CFT and
BFT models) are bandwidth-bound, the throughput of the or-
dering service is capped by the network capacity of its nodes.
Consensus cannot be scaled up by adding more nodes [14,
36], rather, throughput will decrease. However, since order-
ing and validation are decoupled, we are interested in ef-
ficiently broadcasting the execution results to all peers for
validation, after the ordering phase. This is precisely the
goal of the gossip component, which utilizes epidemic mul-
ticast [15] for this purpose. The blocks are signed by the
ordering service. This means that a peer can, upon receiv-
ing all blocks, independently assemble the blockchain and
verify its integrity.

Dissemination through gossip is robust and resistant to
the node failures, in contrast to overlay networks. Making
random selections allows gossip to reduce the overhead of
maintaining connectivity among peers, and, moreover, re-
duces the attack surface. Gossip works well in the permis-
sioned environment, where it can withstand sybil attacks and
message forgery.

The communication layer for gossip is based on gRPC
and utilizes TLS with mutual authentication, which enables
each side to bind the TLS credentials to the identity of the
remote peer. The gossip component maintains an up-to-date
membership view of the online peers in the system. All peers
independently build a local view from periodically dissem-
inated membership data. Furthermore, a peer can reconnect
to the view after a crash or a network outage.

The main purpose of gossip is to reliably distribute mes-
sages, i.e., blocks from the ordering phase, among the peers,
taking advantage of a push-pull protocol. It uses two phases
for information dissemination: during push, each peer se-
lects a random set of active neighbors from the membership
view, and forwards them the message; during pull, each peer
periodically probes a set of randomly selected peers and re-
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quests missing messages. It has been shown [15, 22] that
using both methods in tandem is crucial to optimally utilize
the available bandwidth and to ensure that all peers receive
all messages with high probability.

In order to reduce the load of sending blocks from the or-
dering nodes to the network, the protocol also elects a leader
peer that pulls blocks from the ordering service on their be-
half and initiates the gossip distribution. This mechanism is
resilient to leader failures.

Another task of gossip is to transfer the state to newly
joining peers and peers that were disconnected for a long
time. They need to receive all blocks in the chain. This fea-
ture relies on the fact that the largest block-sequence num-
ber stored by each peer is disseminated with the membership
data.

4.4 Ledger
The ledger component at each peer maintains the ledger
and the blockchain state on persistent storage and enables
simulation, validation, and ledger-update phases. Broadly,
it consists of a block store and a peer transaction manager
(PTM).

Ledger block store. The ledger block store persists trans-
action blocks and is implemented as a set of append-only
files. Since the blocks are immutable and arrive in a defi-
nite order, an append-only structure gives maximum perfor-
mance. In addition, the block store maintains a few indices
for random access to a block or to a transaction in a block.

Peer transaction manager (PTM). The PTM maintains
the latest state in a versioned key-value store. It stores one
tuple of the form (key, val, ver) for each unique entry key
stored by any chaincode, containing its most recently stored
value val and its latest version ver. The version consists
of the block sequence number and the sequence number of
the transaction (that stores the entry) within the block. This
makes the version unique and monotonically increasing.

The PTM uses a local key-value store to realize the ver-
sioned key-value store, implemented by a LevelDB key-
value database implemented in Go (https://github.
com/syndtr/goleveldb) or Apache CouchDB (http:
//couchdb.apache.org/).

During simulation the PTM provides a stable snapshot
of the latest state to the transaction. As mentioned in Sec-
tion 3.2, the PTM records in readset a tuple (key, ver) for
each entry accessed by GetState and in writeset a tuple
(key, val) for each entry updated with PutState by the trans-
action. In addition, the PTM supports range queries, for
which it computes a cryptographic hash of the query results
(a set of tuples (key, ver)) and adds the query string itself and
the hash to readset.

For transaction validation (Sec. 3.4), the PTM validates
all transactions in a block sequentially. This checks whether
a transaction conflicts with any preceding transaction (within
the block or earlier). For any key in readset, if the version

recorded in readset differs from the version present in the
latest state (assuming that all preceding valid transactions
are committed), then the PTM marks the transaction as in-
valid. For range queries, the PTM re-executes the query and
compares the hash with the one present in readset, to ensure
that no phantom reads occur. This read-write conflict seman-
tics results in one-copy serializability [23].

The ledger component tolerates a crash of the peer during
the ledger update as follows. After receiving a new block, the
PTM has already performed validation and marked transac-
tions as valid or invalid within the block, using a bit mask as
mentioned in Section 3.4. The ledger now writes the block
to the ledger block store, flushes it to disk, and subsequently
updates the block store indices. Then the PTM applies the
state changes from writeset of all valid transactions to the lo-
cal versioned store. Finally, it computes and persists a value
savepoint, which denotes the largest successfully applied
block number. The value savepoint is used to recover the
indices and the latest state from the persisted blocks when
recovering from a crash.

4.5 Chaincode Execution
Chaincode is executed within an environment that is loosely
coupled with the rest of the peer and that supports plugins
for adding new languages for programming chaincodes. Cur-
rently three languages are supported for chaincode: Go, Java,
and Node.

Every user-level or application chaincode runs in a sepa-
rate process within a Docker container environment, which
isolates the chaincodes from each other and from the peer.
This also simplifies the management of the lifecycle for
chaincodes (i.e., starting, stopping, or aborting chaincode).
The chaincode and the peer communicate using gRPC mes-
sages. Through this loose coupling, the peer is agnostic of
the actual language in which chaincode is implemented.

In contrast to application chaincode, system chaincode
runs directly in the peer process. System chaincode can
implement specific functions needed by Fabric and may be
used in situations where the isolation among user chaincodes
is overly restrictive. More details on system chaincodes are
given in the next section.

4.6 Configuration and System Chaincodes
Fabric’s basic behavior is customized through channel con-
figuration and through special chaincodes, known as system
chaincodes.

Channel configuration. Recall that a channel forms one
logical blockchain. The configuration of a channel is main-
tained in metadata persisted in special configuration blocks.
Each configuration block contains the full channel config-
uration and does not contain any other transactions. Each
blockchain begins with a configuration block known as the
genesis block which is used to bootstrap the channel. The
channel configuration includes:
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• Definitions of the MSPs for the participating nodes.
• The network addresses of the OSNs.
• Shared configuration for the consensus implementation

and the ordering service, such as batch size and timeouts.
• Rules governing access to the ordering service operations

(broadcast, and deliver).
• Rules governing how each part the channel configuration

may be modified.

The configuration of a channel may be updated using a
channel configuration update transaction. This transaction
contains a representation of the changes to be made to the
configuration, as well as a set of signatures. The ordering
service nodes evaluate whether the update is valid by using
the current configuration to verify that the modifications are
authorized using the signatures. The orderers then generate a
new configuration block, which embeds the new configura-
tion and the configuration update transaction. Peers receiv-
ing this block validate whether the configuration update is
authorized based on the current configuration; if valid, they
update their current configuration.

System chaincodes. The application chaincodes are de-
ployed with a reference to an endorsement system chaincode
(ESCC) and to a validation system chaincode (VSCC). These
two chaincodes are selected in a symmetric way, such that
the output of the ESCC (an endorsement) may be validated
as part of the input to the VSCC.

The ESCC takes as input a proposal and the proposal
simulation results. If the results are satisfactory, then the
ESCC produces a response, containing the results and the
endorsement. For the default ESCC, this endorsement is
simply a signature by the peer’s local signing identity.

The VSCC takes as input a transaction and outputs
whether that transaction is valid. For the default VSCC,
the endorsements are collected and evaluated against the
endorsement policy specified for the chaincode.

Further system chaincodes implement other support func-
tions, such as configuration and chaincode lifecycle.

5. Evaluation
Even though Fabric is not yet performance-tuned and opti-
mized, we report in this section on some preliminary per-
formance numbers. Fabric is a complex distributed system;
its performance depends on many parameters including the
choice of a distributed application and transaction size, the
ordering service and consensus implementation and their pa-
rameters, the network parameters and topology of nodes in
the network, the hardware on which nodes run, the num-
ber of nodes and channels, further configuration parameters,
and the network dynamics. Therefore, in-depth performance
evaluation of Fabric is postponed to future work.

In the absence of a standard benchmark for blockchains,
we use the most prominent blockchain application for eval-
uating Fabric, a simple authority-minted cryptocurrency that

uses the data model of Bitcoin, which we call Fabric coin
(abbreviated hereafter as Fabcoin). This allows us to put the
performance of Fabric in the context of other permissioned
blockchains, which are often derived from Bitcoin or Ethe-
reum. For example, it is also the application used in bench-
marks of other permissioned blockchains [19, 32].

In the following, we first describe Fabcoin (Sec. 5.1),
which also demonstrates how to customize the validation
phase and endorsement policy. In Section 5.2 we present the
benchmark and discuss our results.

5.1 Fabric Coin (Fabcoin)
UTXO cryptocurrencies. The data model introduced by
Bitcoin [28] has become known as “unspent transaction out-
put” or UTXO, and is also used by many other cryptocur-
rencies and distributed applications. UTXO represents each
step in the evolution of a data object as a separate atomic
state on the ledger. Such a state is created by a transaction
and destroyed (or “consumed”) by another unique transac-
tion occurring later. Every given transaction destroys a num-
ber of input states and creates one or more output states. A
“coin” in Bitcoin is initially created by a coinbase transac-
tion that rewards the “miner” of the block. This appears on
the ledger as a coin state designating the miner as the owner.
Any coin can be spent in the sense that the coin is assigned
to a new owner by a transaction that atomically destroys the
current coin state designating the previous owner and creates
another coin state representing the new owner.

We capture the UTXO model in the key-value store of
Fabric as follows. Each UTXO state corresponds to a unique
KVS entry that is created once (the coin state is “unspent”)
and destroyed once (the coin state is “spent”). Equivalently,
every state may be seen as a KVS entry with logical ver-
sion 0 after creation; when it is destroyed again, it receives
version 1. There should not be any concurrent updates to
such entries (e.g., attempting to update a coin state in differ-
ent ways amounts to double-spending the coin).

Value in the UTXO model is transferred through transac-
tions that refer to several input states that all belong to the
entity issuing the transaction. An entity owns a state because
the public key of the entity is contained in the state itself.
Every transaction creates one or more output states in the
KVS representing the new owners, deletes the input states in
the KVS, and ensures that the sum of the values in the input
states equals the sum of the output states’ values. There is
also a policy determining how value is created (e.g., coin-
base transactions in Bitcoin or specific mint operations in
other systems) or destroyed (i.e., as a fee consumed by the
execution).

Fabcoin implementation. Each state in Fabcoin is a tuple
of the form (key, val) = (txid.j, (amount, owner, label)), de-
noting the coin state created as the j-th output of a transac-
tion with identifier txid and allocating amount units labeled
with label to the entity whose public key is owner. Labels are
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strings used to identify a given type of a coin (e.g., ‘USD‘,
‘EUR‘, ‘FBC‘). Transaction identifiers are short values that
uniquely identify every Fabric transaction. The Fabcoin im-
plementation consists of three parts: (1) a client wallet, (2)
the Fabcoin chaincode, and (3) a custom VSCC for Fabcoin
implementing its endorsement policy.

Client wallet. By default, each Fabric client maintains a
Fabcoin wallet that locally stores a set of cryptographic keys
allowing the client to spend coins. For creating a SPEND
transaction that transfers one or more coins, the client wallet
creates a Fabcoin request request = (inputs, outputs, sigs)
containing: (1) a list of input coin states, inputs = [in, . . .]
that specify coin states (in, . . .) the client wishes to spend, as
well as (2) a list of output coin states, outputs = [(amount, owner,
label), . . .]. The client wallet signs, with the private keys that
correspond to the input coin states, the concatenation of the
Fabcoin request and a nonce, which is a part of every Fabric
transaction, and adds the signatures in a set sigs. A SPEND
transaction is valid when the sum of the amounts in the in-
put coin states is at least the sum of the amounts in the out-
puts and when the output amounts are positive. For a MINT
transaction that creates new coins, inputs contains only an
identifier (i.e., a reference to a public key) of a special en-
tity called Central Bank (CB), whereas outputs contains an
arbitrary number of coin states. To be considered valid, the
signatures of a MINT transaction in sigs must be a crypto-
graphic signature under the public key of CB over the con-
catenation of the Fabcoin request and of the aforementioned
nonce. Fabcoin may be configured to use multiple CBs or
specify a threshold number of signatures from a set of CBs.
Finally, the client wallet includes the Fabcoin request into a
transaction and sends this to a peer of its choice.

Fabcoin chaincode. A peer runs the chaincode of Fab-
coin which simulates the transaction and creates readsets and
writesets. In a nutshell, in the case of a SPEND transaction,
for every input coin state in ∈ inputs the chaincode first per-
forms GetState(in); this puts in into the readset along with its
current version in Fabric’s versioned KVS (Sec. 4.4). Then
the chaincode executes DelState(in) for every input state in,
which also adds in to the writeset and effectively marks the
coin state as “spent.” Finally, for j = 1, . . . , |outputs|, the
chaincode executes PutState(txid.j, out) with the j-th out-
put out = (amount, owner, label) in outputs. In addition, a
peer optionally runs the transaction validation code as de-
scribed next in the VSCC step for Fabcoin; this is not neces-
sary, since the custom VSCC actually validates transactions,
but it allows the (correct) peers to filter out potentially mal-
formed transactions. In our implementation, the chaincode
runs the Fabcoin VSCC without cryptographically verifying
the signatures.

Custom VSCC. Finally, every peer validates Fabcoin trans-
actions using custom VSCC. This verifies first the cryp-
tographic signature(s) in sigs under the respective public

key(s) and performs semantic validation as follows. For a
MINT transaction, it checks that the output states are created
under the matching transaction identifier (txid) and that all
output amounts are positive. For a SPEND transaction, the
VSCC additionally verifies (1) that for all input coin states,
an entry in the readset has been created and that it was also
added to the writeset and marked as deleted, (2) that the sum
of the amounts for all input coin states equals the sum of
amounts of all output coin states, and (3) that input and out-
put coin labels match. Here, the VSCC obtains the amounts
for the input coins by retrieving their current values from the
ledger.

Notice that the Fabcoin VSCC does not check transac-
tions for double spending, as this occurs through Fabric’s
standard validation that runs after the custom VSCC. In par-
ticular, if two transactions attempt to assign the same un-
spent coin state to a new owner, both would pass the VSCC
logic but would be caught subsequently in the read-write
conflict check performed by the PTM. According to Sec-
tions 3.4 and 4.4, the PTM verifies that the current version
number stored in the ledger matches the one in the readset;
hence, after the first transaction has changed the version of
the coin state, the transaction ordered second will be recog-
nized as invalid.

5.2 Experiments
Setup. Unless explicitly mentioned differently, in our ex-
periments: (1) nodes run on Fabric version v1.1-preview2

instrumented for performance evaluation through local log-
ging, (2) nodes are hosted in a single IBM Cloud (SoftLayer)
datacenter as dedicated VMs interconnected with 1Gbps net-
working, (3) all nodes are 2.0 GHz 16-vCPU VMs running
Ubuntu with 8GB of RAM and SSDs as local disks, (4) a
single-channel ordering service runs a typical Kafka orderer
setup with 3 ZooKeeper nodes, 4 Kafka brokers and 3 Fab-
ric orderers, all on distinct VMs, (5) there are 5 peers in to-
tal, all of which are Fabcoin endorsers, and (6) signatures
use the default 256-bit ECDSA scheme. In order to measure
and stage latencies in the transaction flow spanning multiple
nodes, the node clocks are synchronized with an NTP ser-
vice throughout the experiments. All communication among
Fabric nodes is configured to use TLS.

Methodology. In every experiment, in the first phase we
invoke transactions that contain only Fabcoin MINT opera-
tions to produce the coins, and then run a second phase of
the experiment in which we invoke Fabcoin SPEND opera-
tion on previously minted coins (effectively running single-
input, single-output SPEND transactions). When reporting
throughput measurements, we use an increasing number of
Fabric CLI clients (modified to issue concurrent requests)
running on a single VM, until the end-to-end throughput
is saturated, and state the throughput just before saturation.
Throughput numbers are reported as an average throughput

2Patched with commit ID 9e770062 in the Fabric master branch.
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measured throughout the duration of an experiment, disre-
garding the “tail” of the experiment, where throughput drops
due to some client threads finishing submitting their share of
transactions. In every experiment, client threads submit at
least 500k MINT and SPEND transactions.

Choosing the block size. A critical Fabric configuration
parameter that impacts both throughput and latency is block
size. To fix the block size for subsequent experiments, and
to evaluate the impact of block size on performance, we ran
experiments varying block size from 0.5MB to 4MB. Results
are depicted in Fig. 6, showing peak throughput measured at
the peers along with the corresponding average end-to-end
(e2e) latency.

Figure 6. Impact of block size on throughput and latency.

We can observe that throughput does not significantly
improve beyond a block size of 2MB, but latency gets worse
(as expected). Therefore, we adopt 2MB as the block size
for the following experiments, with the goal of maximizing
the measured throughput, assuming the end-to-end latency
of roughly 500ms is acceptable.

Size of transactions. During this experiment, we also ob-
served the size MINT and SPEND transactions. In particular,
the 2MB-blocks contained 473 MINT or 670 SPEND transac-
tions, i.e., the average transaction size is 3.06kB for SPEND
and 4.33kB for MINT. In general, transactions in Fabric are
large because they carry certificate information. Besides,
MINT transactions of Fabcoin are larger than SPEND trans-
actions because they carry CB certificates. This is an avenue
for future improvement of both Fabric and Fabcoin.

Impact of peer CPU. Fabric peers run many CPU-intensive
cryptographic operations. To estimate the impact of CPU on
throughput, we performed a set of experiments in which 4
peers run on 4, 8, 16 and 32 vCPU VMs, while also doing
coarse-grained latency staging of block validation to better
identify bottlenecks. Our experiment focused on the vali-
dation phase, as ordering with Kafka ordering service has
never been a bottleneck in our experiments. The validation

phase, and in particular the VSCC validation of Fabcoin,
is computationally intensive, due to many digital signature
verifications performed in this phase.

Figure 7. Impact of peer CPU on end-to-end throughput
and block validation latency.

The results, with 2MB blocks, are shown in Fig. 7. SPEND
latency is not shown in Fig. 7, as it scales similarly to MINT.
We can observe that Fabcoin VSCC validation scales quasi-
linearly with CPU, as Fabric VSCC validation is embarrass-
ingly parallel. However, the read-write-check and ledger-
access stages are sequential and become dominant with a
larger number of cores (vCPUs). This suggests that future
versions of Fabric could profit from pipelining validation
stages (which are now sequential), optimizing stable-storage
access, and parallelizing read-write dependency checks.

Finally, in this experiment, we measured over 3560 trans-
actions per second (tps) average SPEND throughput at the
32-vCPU peer. The MINT throughput is, in general, slightly
lower than that of SPEND, but the difference remains within
10%.

Latency profiling by stages. We further performed coarse-
grained profiling of latency during our previous experiment
at the peak reported throughput. Results are depicted in
Table 1. The ordering phase comprises broadcast-deliver
latency and internal latency within a peer before valida-
tion starts. The table reports average latencies for MINT
and SPEND, standard deviation, and tail latencies (99% and
99.9%).

We can observe that ordering dominates the overall la-
tency. We observe that average latencies are below 550ms
with sub-second tail latencies. In particular, the highest
end-to-end latencies in our experiment come from the first
blocks, during the load build-up. Latency under lower load
can be regulated and reduced by leveraging the time-to-cut
parameter of the orderer (see Sec. 3.3), which we basically
do not use in our experiments, as we set it to a large value.

SSD vs. RAM disk. To evaluate the overhead of using lo-
cal SSDs for stable storage, we repeated the previous exper-
iment with RAM disks (tmpfs) mounted as stable storage at
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all peer VMs. The benefits are limited, as tmpfs only helps
with the ledger phase of the validation at the peer. We mea-
sured sustained peak throughput at 3870 SPEND tps at 32-
vCPU peer, roughly a 9% improvement over SSD.

avg st.dev 99% 99.9%
(1) endorsement 5.6 / 7.5 2.4 / 4.2 15 / 21 19 / 26
(2) ordering 248 / 365 60.0 / 92.0 484 / 624 523 / 636
(3) VSCC val. 31.0 / 35.3 10.2 / 9.0 72.7 / 57.0 113 / 108.4
(4) R/W check 34.8 / 61.5 3.9 / 9.3 47.0 / 88.5 59.0 / 93.3
(5) ledger 50.6 / 72.2 6.2 / 8.8 70.1 / 97.5 72.5 / 105
(6) validation (3+4+5) 116 / 169 12.8 / 17.8 156 / 216 199 / 230
(7) end-to-end (1+2+6) 371 / 542 63 / 94 612 / 805 646 / 813

Table 1. Latency statistics in milliseconds (ms) for MINT
and SPEND, broken down into five stages at a 32-vCPU
peer with 2MB blocks. Validation (6) comprises stages 3,
4, and 5; the end-to-end latency contains stages 1–5.

6. Related Work
The architecture of Fabric resembles that of a middleware-
replicated database as pioneered by Kemme and Alonso [24].
However, all existing work on this addressed only crash fail-
ures, not the setting of distributed trust that corresponds to a
BFT system. For instance, a replicated database with asym-
metric update processing [25, Sec. 6.3] relies on one node to
execute each transaction, which would not work on a block-
chain. The execute-order-validate architecture of Fabric can
be interpreted as a generalization of this work to the Byzan-
tine model, with practical applications to distributed ledgers.

Byzantium [17] and HRDB [35] are two further prede-
cessors of Fabric from the viewpoint of BFT database repli-
cation. Byzantium allows transactions to run in parallel and
uses active replication, but totally orders BEGIN and COM-
MIT/ROLLBACK using a BFT middleware. In its opti-
mistic mode, every operation is coordinated by a single mas-
ter replica; if the master is suspected to be Byzantine, all
replicas execute the transaction operations for the master and
it triggers a costly protocol to change the master. HRDB re-
lies in an even stronger way on a correct master. In contrast
to Fabric, both systems use active replication, cannot handle
a flexible trust model, and rely on deterministic operations
by the replicas. However, their database API is richer than
the KVS model of Fabric.

In Eve [21] a related architecture for SMR has been ex-
plored also in the BFT model. Its peers execute transactions
concurrently and then verify that they all reach the same out-
put state, using a consensus protocol. If the states diverge,
they roll back and execute operations sequentially. Eve con-
tains the element of independent execution, which also exists
in Fabric, but offers none of its other features.

A large number of distributed ledger platforms in the
permissioned model have come out recently, which makes
it impossible to compare to all (some prominent ones are
Tendermint [5], Quorum [19], Chain Core [12], Multi-
chain (https://www.multichain.com/), Hyperledger
Sawtooth (https://sawtooth.hyperledger.org), the

Volt proposal [32], and more, see references in recent over-
views [9, 16]). All platforms follow the order-execute archi-
tecture, as discussed in Section 2. As a representative exam-
ple, take the Quorum platform [19], an enterprise-focused
version of Ethereum. With its consensus based on Raft [29],
it disseminates a transaction to all peers using gossip and the
Raft leader (called minter) assembles valid transactions to a
block, and distributes this using Raft. All peers execute the
transaction in the order decided by the leader. Therefore it
suffers from the limitations mentioned in Sections 1–2.
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